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Abstract—Global Epipolar Adjustment (GEA) is an alternative
formulation for solving the Bundle Adjustment (BA) problem
without explicitly considering the points in the map, hence it is
structureless. Albeit computationally interesting, this formulation
has not found extensive use in robotics applications. In this paper
we experimentally analyze the advantages and the shortcomings
of GEA and BA. The goal of this work is to characterize the
situations when the use of one might be convenient over the
other. We made available an open source C++ implementation
of all approaches at the time of writing. 1

I. INTRODUCTION

Bundle Adjustment (BA) [1] is a well-known problem in
computer vision and robotics, and is used as a building block
of many Structure from Motion (SfM) [2] and Simultaneous
Localization and Mapping (SLAM) [8] systems. Simply put,
the task of BA is to compute the positions of a set of 3D
points in the scene and the poses of a set of cameras that better
explain the measured projections of the points on the images
captured by the cameras. The common way to solve BA is by
minimizing the robustified sum of the reprojection errors of
all point observations through an Iterative Reweighted Least-
Squares (IRLS) schema. This approach explicitly estimates
the pose of all cameras and the position of all points. Given
the potentially high number of variables, this procedure is
computationally challenging.

Global Epipolar Adjustment (GEA) [6], [9] is an alternative
formulation for solving the poses of the cameras that allows
to never explicitly computing the poses of the points. To
achieve this, GEA minimizes the epipolar constraint instead
of the reprojection error. Thanks to the peculiar structure of
the GEA error terms, the implementation can be significantly
accelerated. Still, in the absence of outliers and errors GEA
and BA have the same global minimum for the camera
poses. BA is used as a building block of Visual Odometry
(VO) and SLAM to refine the local/global map estimates and
reduce their drift. In this paper, we describe how these two
formulations are correlated and how they can be both solved
by IRLS. Furthermore, we perform a comparative analysis of
the two approaches in a representative set of situations.

II. BUNDLE ADJUSTMENT

Consider a set of cameras located at poses X1:N observing
a set of points x1:M in the environment. Let znm be the
measured projection of the point xm onto the camera Xn.

This work has been supported by PNRR MUR project PE0000013-FAIR.
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Fig. 1: BA problem consisting of 1814 points, observed by 100 stereo cameras
totaling 72271 measurements. Top: initial configuration. Bottom left: BA
optimization result, it took 3.15 seconds. Bottom right: GEA optimization
result, it took 2.71 seconds in a naive implementation, and 1.38 s with
algorithmic enhancements.

BA seeks to estimate both camera poses and point positions
based on the known set {znm}. In the remainder of this work,
we represent a camera pose X = [R t] as a homogeneous
transformation matrix consisting of a 3D rotation matrix R,
and a translation vector t, where we omit the last constant
row [0 1] for compactness. For the same reason, we refer
to the transformation of a 3D point p by X with product
Xp ≜ Rp+ t, where we implicitly assume that the point can
be converted to homogeneous coordinates and converted back
after the operation.

For an ideal pinhole camera, the re-projection error is the
difference between the image coordinates that would result
from imaging the point xm from a camera located at Xn and
the actual measurement znm, as follows:

eba(Xn,xm) ≜ π
(
KX−1

n xm

)
− znm. (1)

Here K is the known camera matrix, and π(·) : ℜ3 → ℜ2 is
the homogeneous division so that π([x y z]⊤) = [xz ,

y
z ]

⊤.
A common formulation of BA involves the minimization of

all measurement errors with respect to the camera poses and
point positions, as follows:

X ∗ = argmin
X

K∑
k=1

ρ∥ebak (Xn(k),xm(k))∥Ωk
. (2)
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Here X = ⟨X1:N ,x1:M ⟩ is the set of all variables being
estimated, and k is an index enumerating all measurements
{znm}. Accordingly, n(k) and m(k) are selector functions
denoting respectively the camera pose index and the point
index corresponding to the kth measurement, while Ωk is an
information matrix expressing the confidence of the measure-
ment. Finally, ρ(·) is a robust cost function used to lessen the
effect of outliers, usually characterized by large errors.

A common way to represent the problem expressed in
Eq. (2) is through a factor graph [4]. A factor graph for BA
would consist of N +M variable nodes, one for each camera
pose and one for each point position, and of K factor nodes
corresponding to the error terms ebak . Each factor node ebak
is connected to the pair of variables Xn(k) and xm(k) from
which it depends.

Popular factor graph solvers implement IRLS to solve
Eq. (2). IRLS seeks to iteratively refine an existing solution by
computing a perturbation ∆x that minimizes a local quadratic
approximation of the problem. In the case of BA, ∆x has
dimension 6N+3M , since each camera pose contributes with
6 degrees of freedom, and each point has 3. For completeness,
we report in Alg. 1 a schematic version of one iteration of
IRLS. According to [5], we used the ⊞ notation since we carry
on the linearization of the error functions in Line 9 with respect
to a local Euclidean perturbation around the current estimate
X̆ . Let Xi be the ith variable in the pool, and let ∆xi be
the corresponding block in the perturbation vector, if Xi is a
camera pose Xi⊞∆xi = exp(∆xi)Xi, while if xi is a point
position xi ⊞ ∆xi = xi + ∆xi. With exp(∆xi) we denote
the transformation matrix computed from the 6D perturbation
∆xi, where the zero perturbation maps the identity transform:
exp(0) = I.

Remarkably, in BA the error ek depends only on a pair of
variables: the camera Xn(k) and the point xm(k). Hence, the
Jacobian in line 9 will be mostly empty except in the 2 × 6
block corresponding to ∆xn(k) and in the 2 × 3 block of
∆xm(k). This leads to a sparse structure of the H matrix
computed in line 11, where each measurement contributes
to the block diagonal, and to the off-diagonal block at the
intersection of the observed point and the observing camera.

In the next section, we investigate an alternative formula-
tion of the problem, firstly presented in [9], that completely
neglects estimating the point variables by leveraging on the
epipolar constraint between pairs of views.

III. GLOBAL EPIPOLAR ADJUSTMENT

The essential matrix E characterizes the relation between
two cameras observing the same point in the world from two
different poses X and X′ through the following constraint

z̄⊤Ez̄′ = 0. (3)

Here z̄ = K−1z is a measurement in camera coordinates,
hence z̄ and z̄′ represent the direction of a ray imaging the
point in the first and the second cameras respectively.

Algorithm 1 One iteration of IRLS

Require: Initial guess X̆ ; Measurements C = {⟨Zk,Ωk⟩}
Ensure: Improved solution X ⋆

1: b← 0
2: H← 0
3: for all k ∈ {1 . . . K} do
4: ek ← ek(X )
5: χk ← eTkΩkek
6: uk ←

√
χk

7: γk = 1
uk

∂ρk(u)
∂u

∣∣∣
u=uk

.

8: Ω̃k = γkΩk

9: Jk ← ∂ek(X⊞∆x)
∂∆x

∣∣∣
∆x=0

10: b← b+ J⊤
k Ω̃kek

11: H← H+ J⊤
k Ω̃kJk

12: ∆x← solve(H∆x = −b)
13: return X̆ ⊞∆x

The essential matrix is correlated to the relative position
∆X = X−1X′ of the two cameras based on the following
relation:

E = ∆R⊤⌊∆t⌋×, (4)

however to prevent degeneration for t = 0, we employ a
normalized version of the essential matrix

Ē =
E

∥∆t∥
. (5)

Since the relative translation depends on the poses X and X′,
we can say that the normalized essential matrix is a function
of the two poses, and we turn the constraint of Eq. (4) to a
monodimensional error factor:

egea(X,X′) = z̄⊤Ē(X,X′)z̄′. (6)

In GEA we are interested in finding the camera poses that
minimize the norm of errors in Eq. (6), as follows:

X∗ = argmin
X

N∑
n=1

∑
(m,m′)⊂C(n)

ρ(∥egeak (Xm,Xm′)∥). (7)

For each point xn we consider the set of all cameras C(n)
that observed the point. From this set we pick pairs of distinct
cameras (m,m′), and we evaluate the error egea. For each
pair of cameras, we will have as many factors as the number
of points that are visible from both. The variables in this new
estimation problem, however do not include the points.
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Simplistic algebraic manipulations of Eq. (6) lead us to the
express the epipolar error as:

egea(X,X′) = z̄⊤Ē(X,X′)z̄′

= z̄⊤


z̄

′⊤

z̄
′⊤

z̄
′⊤


︸ ︷︷ ︸

u⊤


Ē(X,X′)⊤1:∗

Ē(X,X′)⊤2:∗

Ē(X,X′)⊤3:∗


︸ ︷︷ ︸

v(X,X′)

= u⊤v(X,X′).

(8)

In Eq. (8) we expressed the same formula of Eq. (6) as the
dot product of two 9D vectors: u, and v. The first vector
u contains the components of the outer product between the
measurements z̄ and z̄′. The second term v contains the rows
of the essential matrix and is a function of the camera poses X
and X′. This expression paves the road for further optimization
in implementing Alg. 1 for this case.

At first, we notice that the generic Jacobian J can be
computed as

Jgea(X,X′) =
[
∂egea(X⊞∆x,X′)

∂∆x

∂egea(X,X′⊞∆x′)
∂∆x′

]
= u⊤

∂v (X⊞∆x,X′)

∂∆x︸ ︷︷ ︸
Jv

∂v (X,X′ ⊞∆x′)

∂∆x′︸ ︷︷ ︸
J′
v


= u⊤

[
Jv J′

v

]
.

(9)
Here Jv and J′

v are 9× 6 Jacobian matrices of the essential
vector v, with respect to the perturbation of the first and
second camera poses ∆x and ∆x′, and they do not depend
on the measurements encoded in the vector u. For the sake of
readability in Eq. (8) and Eq. (9) we omitted the indices.

Given two cameras m and m′, in Eq. (7) we have an
addend for each point imaged by both. This term depends on
the measurements z̄ and z̄′. For the generic pair of cameras
m and m′, we can then define a set of measurement pairs
Z(m,m′) = {⟨z̄i, z̄′i⟩} spanning all mutually observed points.

So, we can compactly express both the Jacobian matrices
and the error of the generic measurement between a pair of
cameras m and m′ as:

egeai (m,m′) = uT
i v(m,m′) (10)

Ji(m,m′) = uT
i Jv(m,m′). (11)

Within one iteration of Alg. 1 both v(m,m′) and Jv(m,m′)
do not change for a fixed pair of cameras. Hence, the com-
putation requires just evaluating a dot product for the error
egeai and a product between a row vector and two 9 × 6
matrices for the Jacobian Ji. If one chooses the L2 norm
as ρ(·), Alg. 1 degenerates to a classical Gauss-Newton (GN)
schema, and in this case one can carry on further optimizations
by precomputing constant terms that encapsulate all pairwise
measurements.

Given a pair of cameras m and m′, the cumulative errors
computed in lines 5, 10 and line 11 become:

χm,m′ =
∑

⟨zi,z′
i⟩∈Z(m,m′)

v⊤(m,m′)uiu
⊤
i v(m,m′)

bm,m′ =
∑

⟨zi,z′
i⟩∈Z(m,m′)

J⊤
v (m,m′)uiu

⊤
i v(m,m′)

Hm,m′ =
∑

⟨zi,z′
i⟩∈Z(m,m′)

J⊤
v (m,m′)uiu

⊤
i J

(
vm,m′)

(12)

Bringing in the summations, and defining per camera pair
9×9 constant measurement matrix Um,m′ =

∑
i uiu

⊤
i , allows

to simplify the above as follows:

χm,m′ = v⊤(m,m′)Um,m′v(m,m′)

bm,m′ = J⊤
v (m,m′)Um,m′v(m,m′)

Hm,m′ = J⊤
v (m,m′)Um,m′Jv(m,m′)

(13)

Um,m′ depends only on the measurements of shared observa-
tions between the camera pair and can be precomputed, while
the Jacobians Jv and the vectorized essential matrix v remain
unchanged within one IRLS iteration. By leveraging these
aspects, we lead to an algorithm that can construct the linear
system in a time proportional to the number of camera pairs
that share a common observation, regardless of the number of
points in the scene.

IV. EXPERIMENTS

To experimentally compare BA and GEA we used synthetic
datasets representing bundling problems. We employed three
different trajectories: Sphere, Torus, and Colosseum. The first
two emulate the motion around the corresponding geomet-
ric figure, while the third one is extracted from real data
[3]. For each trajectory, we emulated two sensor settings:
monocular and stereo. The characteristics of the datasets
are summarized in Tab. I. To render our data statistically
representative, we added five different noise realizations to
the same initial guess. We implemented both systems within
the srrg2_solver [4]. In the results, we report mean
and standard deviation of Absolute Trajectory Error (ATE)
RMSE, computed with evo2, and runtime. We ran the exper-
iments with an i7-7700k CPU (4 cores @4.50 GHz), using
the Levenberg-Marquardt (LM) algorithm on a single-core
implementation.

In Tab. II it’s possible to see that BA has a lower error in
both sphere and torus trajectories. On Colosseum with mono
setup GEA is slightly more accurate. This can be explained by
the absence of a loop closure that prevents all systems from
recovering the drift. The high variance of the results with the
stereo setup shows the sensitivity to the initial guess in the
alternative formulation.

GEA with caching Eq. (13) is the fastest approach, see
Fig. 2, however it prevents the use of robustifiers. This is not
an issue if we are highly confident about the data association

2https://github.com/MichaelGrupp/evo
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TABLE I: Characteristics of the datasets, where N is the number of poses,
M the number of landmarks generated, Fba the number of BA factors, and
Fgea the number of pairwise GEA factors.

N M Fba Fgea

Mono
Coloss. 1000 10480 823773 97849

Sphere 100 1813 36063 2557

Torus 200 3869 144522 12804

Stereo
Coloss. 1000 7279 2450792 765445

Sphere 100 1814 72271 10232

Torus 200 5400 400009 53158

TABLE II: ATE RMSE[m] results of the two factor formulations with
synthetic trajectory - mean and standard deviation.

Init Guess BA GEA

A
T
E

p
o
s
[m

]

M
on

o Colosseum 0.970 ± 0.450 0.018 ± 0.008 0.009 ± 0.002

Sphere 3.512 ± 0.455 0.007 ± 2e−4 0.041 ± 0.011

Torus 8.359 ± 1.653 0.011 ± 2e−4 0.027 ± 9e − 4

St
er

eo

Colosseum 2.201 ± 1.090 0.550 ± 0.783 1.521 ± 1.080

Sphere 8.516 ± 2.821 0.013 ± 0.004 0.277 ± 0.127

Torus 24.918 ± 4.854 0.064 ± 0.032 0.433 ± 0.499

A
T
E

r
o
t
[r
a
d
]

M
on

o Colosseum 0.016 ± 0.004 3e−4 ± 9e−5 2e−4 ± 5e−5

Sphere 0.507 ± 0.026 0.001 ± 6e−5 0.004 ± 4e−4

Torus 0.621 ± 0.166 0.001 ± 2e−5 0.002 ± 9e − 5

St
er

eo

Colosseum 0.025 ± 0.009 0.005 ± 0.007 0.014 ± 0.008

Sphere 0.764 ± 0.258 0.001 ± 2e−4 0.020 ± 0.008

Torus 0.960 ± 0.303 0.002 ± 0.001 0.051 ± 0.085

Mono Stereo
0.00

1.00

2.00

3.00

4.00

5.00

M
ea

n
It

er
at

io
n

T
im

e
[s

]

Colosseum

Mono Stereo
0.00

0.05

0.10

0.15

0.20

Sphere

Mono Stereo
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

Torus

BA GEA GEA cached

Mono Stereo
0.00

50.00

100.00

150.00

200.00

250.00

300.00

N
u

m
It

er
at

io
n

Colosseum

Mono Stereo
0.00

5.00

10.00

15.00

20.00

Sphere

Mono Stereo
0.00

5.00

10.00

15.00

20.00

25.00

30.00

Torus

BA GEA GEA cached

Fig. 2: Runtime analysis of the BA, GEA, and GEA cached factors for the
three synthetic trajectories. Above: mean time required by each iteration.
Below: mean number of iterations to converge to solution.

or the number of outliers is irrelevant. To analyze the effect of
outliers we inject 5% of wrong measurements in a subsequent
experiment, by randomly flipping the measurement indices
in the optimization problem. We chose the Cauchy robust
function [7]. The results reported in Tab. III confirm our

TABLE III: ATE RMSE[m] results of the two factor formulations with and
without robustifier in presence of outliers - mean and standard deviation.

Init Guess GEA w/o rob. GEA w/ rob. BA w/ rob.

A
T
E

p
o
s
[m

]

M
on

o Coloss. 0.970 ± 0.450 0.560 ± 0.112 0.313 ± 0.150 0.100 ± 0.051

Sphere 3.512 ± 0.455 0.241 ± 0.076 0.143 ± 0.024 0.008 ± 6e−4

Torus 8.359 ± 1.653 0.055 ± 0.003 0.031 ± 8e−4 0.012 ± 5e−4

St
er

eo

Coloss. 2.201 ± 1.090 2.483 ± 0.888 0.772 ± 0.145 0.525 ± 0.847

Sphere 8.516 ± 2.821 0.758 ± 0.152 0.285 ± 0.100 0.012 ± 0.003

Torus 24.918 ± 4.854 0.312 ± 0.442 0.050 ± 0.016 0.026 ± 0.004

A
T
E

r
o
t
[r
a
d
]

M
on

o Coloss. 0.016 ± 0.004 0.010 ± 0.003 0.007 ± 0.004 0.001 ± 7e−4

Sphere 0.507 ± 0.026 0.034 ± 0.012 0.019 ± 0.004 0.001 ± 1e−4

Torus 0.621 ± 0.166 0.004 ± 6e−5 0.002 ± 7e−5 0.001 ± 2e−5

St
er

eo

Coloss. 0.025 ± 0.009 0.020 ± 0.008 0.011 ± 0.008 0.005 ± 0.008

Sphere 0.764 ± 0.258 0.101 ± 0.020 0.024 ± 0.011 0.001 ± 2e−4

Torus 0.960 ± 0.303 0.046 ± 0.085 0.002 ± 6e−4 9e−4 ± 1e−4

conjuncture: the accuracy of BA with robustifier is ten times
higher than GEA in realistic scenarios, i.e., noisy measure-
ments and wrong data association. We omitted the results
of BA without robustifier because their computational cost is
negligible, and there is no reason not to use them.

V. CONCLUSIONS

In this work, we made an accuracy and runtime comparison
between BA and GEA, two different solutions to the problem
of estimating the camera trajectory. The results suggest that
BA is more accurate and robust, while GEA requires a substan-
tially lower computation and achieves a reasonable accuracy
in the absence of data association errors. Based on these
considerations we envision GEA as a promising alternative
to BA in embedded applications or in settings where the data
association is given.
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